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Abstract

A framework for the regularized and robust estimation of
non-uniform dimensionality and density in high dimen-
sional noisy data is introduced in this work. This leads to
learning stratifications, that is, mixture of manifolds repre-
senting different characteristics and complexities in thedata
set. The basic idea relies on modeling the high dimensional
sample points as a process of Translated Poisson mixtures,
with regularizing restrictions, leading to a model which in-
cludes the presence of noise. The Translated Poisson dis-
tribution is useful to model a noisy counting process, and
it is derived from the noise-induced translation of a regu-
lar Poisson distribution. By maximizing the log-likelihood
of the process counting the points falling into a local ball,
we estimate the local dimension and density. We show that
the sequence of all possible local counting in a point cloud
formed by samples of a stratification can be modeled by a
mixture of different Translated Poisson distributions, thus
allowing the presence of mixed dimensionality and densi-
ties in the same data set. With this statistical model, the pa-
rameters which best describe the data, estimated via expec-
tation maximization, divide the points in different classes
according to both dimensionality and density, together with
an estimation of these quantities for each class. Theoretical
asymptotic results for the model are presented as well. The
presentation of the theoretical framework is complemented
with artificial and real examples showing the importance of
regularized stratification learning in high dimensional data
analysis in general and computer vision and image analysis
in particular.

1 Introduction

Recently, there has been significant interest in analyzing the
intrinsic structure of high dimensional data, this is com-

monly known asmanifold learning, e.g., [4, 6, 9, 20, 23, 28,
33]. Often, points that live in a high dimensional space can
be parametrized by a number of parameters much smaller
than the ambient dimension. A representation (embedding)
of the data in a lower dimensional space is very helpful for
analysis and computations on the dataset.

Most of the works on manifold learning rely on the hy-
pothesis that all the points under analysis are samples of the
same manifold and thus there is a unique intrinsic dimen-
sion. However, this is often not a correct assumption. It is
likely that, for example, a collection of image portraits of
the same person under varying pose and illumination, lies
on a manifold defined by a set of parameters related to the
variations in pose and illumination. On the other hand, let
us consider a set of images representing scanned digits. It
might happen that the images representing the digit ‘1’ can
be described with a different number of parameters than the
images for the digit ‘2.’ Videos of diverse human motions
contain the same complexity variability. In these cases, it
is important to detect that there are different complexities
present in the same (noisy) point cloud data. This is the
subject of this work.

This problem, clustering-by-dimensionality andstratifi-
cation learning, has recently been explored in a handful of
works. Barbará and Chen, [3], proposed a hard clustering
technique based on the fractal dimension (box-counting).
Starting from an initial clustering, they incrementally add
points into the cluster for which the change in the fractal di-
mension after adding the point is the lowest. They also find
the number of clusters and the intrinsic dimension of the un-
derlying manifolds. Gioniset al., [13], propose a two-step
algorithm: First, they estimate the local correlation dimen-
sion and density for each point; then, standard clustering
techniques are used to cluster the two-dimensional repre-
sentation (dimension + density) of the data. Souvenir and
Pless, [31], use an Expectation Maximization (EM) type of
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technique, combined with weighted geodesic multidimen-
sional scaling (weighted ISOMAP [33]). The weights mea-
sure how well each point fits the underlying manifold de-
fined by the current set of points in the cluster. After clus-
tering, each cluster dimensionality is estimated following
[23]. Vidal et al., [18, 36], cluster linear subspaces with an
algebraic geometric method based on polynomial differen-
tiation, called Generalized PCA (GPCA), which also finds
the number of linear subspaces and their intrinsic dimen-
sions. An algorithm for clustering linear manifolds based on
lossy coding was proposed by Maet al. [25]. Goh and Vidal
[14] extend [27] to cluster a union ofJ , non-intersecting,k-
connected nonlinear manifolds. It is done with the vectors
spanning the null space of the LLE matrix [28], which are a
linear combination of the membership vectors and the em-
bedding vectors of theJ connected components. The work
of Mordohai and Medioni, [26], estimates the local dimen-
sion using tensor voting. Cao and Haralick, [7], propose a
hard clustering by dimensionality: First, local dimensional-
ity is computed via local PCA; and then, neighboring points
are clustered together if they have the same dimension and
if the error of representing the new cluster as a combination
of basis functions in a kernel-based feature space is small.
Among these clustering-by-dimensionality techniques, only
the one by Cao and Haralick includes spatial information in
order to obtain a regularized classification. Recently, Lu
and Vidal, [24], combined GPCA with an additional spa-
tial constraint in ak-means fashion. They showed that,
by adding this constraint, the classification is improved in
the intersection of the linear subspaces. From the computa-
tional geometry perspective, a Voronoi-based technique to
compute local dimensionality has been introduced in [11],
and demonstrated for 3D point cloud data. The diffusion
distance framework, [8, 22], can work with stratifications,
though no explicit estimation of the clusters is performed
and single maps into Euclidean space are performed for the
whole data set. Recently, and following in part the theory
of persistent topology [12], a framework for studying stratas
based on local homology has been introduced in [5].

These recent works have clearly shown the necessity to
go beyond manifold learning, into “stratification learning.”
In our work, we do not assume linear subspaces, and we
simultaneously estimate the soft clustering and the intrin-
sic dimension and density of the clusters while being ro-
bust to noise and outliers. This collection of attributes is
not shared by any of the pioneering works just described.
Our approach is an extension of the Levina and Bickel’s
local dimension estimator [23]. They proposed to com-
pute the intrinsic dimension at each point using a Maxi-
mum Likelihood (ML) estimator based on a Poisson dis-
tribution. We propose to compute a ML on the whole point
cloud data at the same time (and not one for each point in-
dependently), based on a Translated Poisson mixture model,

which models the presence of noise and permits to have dif-
ferent classes (each one with their own dimension and sam-
pling density). This technique automatically gives a soft
clustering according to dimensionality and density, with an
estimation of both quantities for each class. A preliminary
version of this work was presented in [15] and a regularized
version together with asymptotic results in [16]. These tech-
niques are particular cases of the more general Translated
Poisson model introduced in this paper in order to handle
noise.1

The remainder of this paper is organized as follows: In
Section 2 we review the method proposed by Levina and
Bickel, [23], which gives a local estimation of the intrin-
sic dimension and has inspired our work. We reformulate
this approach in Section 3 in order to include the presence
of noise in the statistical model. Section 4 explains our ap-
proach for robust stratification learning. We show experi-
ments with synthetic and real data in Section 5, including
comparisons with critical literature, and finally, conclusions
are presented in Section 6.

2 Local intrinsic dimension estima-
tion

Levina and Bickel, [23], proposed a geometric and prob-
abilistic method which estimates the local dimension and
density of a point cloud data. This dimension estimator
is equivalent to the one proposed in [32] in the context
of dynamical systems. Their approach is based on the
idea that if we sample anm-dimensional manifold withT
points, the proportion of points that fall into a ball around
a pointxt is k

T ≈ ρ(xt)V (m)Rk(xt)
m. The given point

cloud, embedded in high dimensionsD, is X = {xt ∈
R
D; t = 1, . . . , T}, k is the number of points inside the

ball,ρ(xt) is the local sampling density at pointxt, V (m) is
the volume of the unit sphere inRm, andRk(xt) is the Eu-
clidean distance fromxt to itsk-th nearest neighbor (kNN).
Then, they consider the inhomogeneous processN(R, xt),
which counts the number of points falling into a smallD-
dimensional sphereB(R, xt) of radiusR centered atxt.
This is a binomial process, and some assumptions need
to be done to proceed. First, ifT → ∞, k → ∞, and
k/T → 0, then we can approximate the binomial process
by a Poisson process. Second, the densityρ(xt) is consid-
ered constant inside the sphere, a valid assumption for small

1We should mention that in [15] we compared the original framework
(with no regularization or noise modelling as here developed), with a two
step approach, where we first estimate the local dimensionality per point
using the original Levina-Bickel approach, and then cluster following the
information bottleneck approach [34]. This has been shown not only to
be less elegant and mathematically funded than the approachhere pre-
sented, but mush less robust, even when compared to the non-regularized
and noise-transparent formulation.
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R. Note that the latter assumption is only local, the global
density does not need to be constant, only inside the local
sphere. With these assumptions, the rateλ of the counting
processN(R, xt) can be written as

λ(R, xt) = ρ(xt)V (m)mRm−1. (1)

The log-likelihood of the processN(R, xt) is then given by

L(m(xt), θ(xt)) =

∫ R

0

logλ(r, xt)dN(r, xt)−
∫ R

0

λ(r, xt)dr,

whereθ(xt) := log ρ(xt) is the density parameter and the
first integral is a Riemann-Stieltjes integral [29]. The max-
imum likelihood estimators lead to a computation for the
local dimension at pointxt, m(xt), depending on all the
neighbors within a distanceR from xt [23]. In practice, it
is more convenient to compute a fixed amountk of nearest
neighbors. Thus, the local estimators at pointxt are

m(xt)=





1

k − 1

k−1
∑

j=1

log
Rk(xt)

Rj(xt)





−1

, (2)

θ(xt)= log
(

(k − 1)/
(

V (m(xt))Rk(xt)
m(xt)

))

, (3)

whereV (m(xt)) = (2πm(xt)/2)/(m(xt)Γ(m(xt)
2 )), and

Γ(m(xt)
2 ) =

∫ ∞

0 tm(xt)/2−1e−tdt. If the data points be-
long to the same manifold, the authors propose to average
over all local estimatorsm(xt) in order to obtain a more ro-
bust estimator. However, if there are two or more manifolds
with different dimensions, the average does not make sense,
unless we first cluster according to dimensionality and then
estimate the dimensionality for each cluster. Another possi-
bility is to include this in the process via the simultaneous
soft clustering and estimation technique described in Sec-
tion 4. Before this, let us present the proposed framework
to naturally handle noise as part of the model.

3 Translated Poisson model

Usually, point samples are contaminated with noise, thus
the point process that we observe is not a simple sampling
of a low dimensional manifold but a perturbation of this
sample process. This can be modeled with a Translated
Poisson Process [30], where an underlying (unobservable)
point process is translated to an output (observable) point
process. The input and output spaces of the points are not
necessarily the same or even of the same dimension (clearly,
noise brings points outside of the underlying manifold and
into the higher dimensional embedding space). More con-
cretely, an input point at locationx in the input spaceX
is randomly translated to a locationz in the output spaceZ,

according to a conditional probability densityf(z|x), called
thetransition density.

For our purposes, we are going to consider the particular
case where each point is translated independently of the oth-
ers and there are no deletions or insertions in the translation
process (these more general cases are also studied in [30]).
We have the following critical theorem [30] which says that
a translated Poisson process is also a Poisson process:

Theorem (Snyder & Miller [30]). Let {N(A) : A ⊆ X}
be a Poisson process with an integrable intensity function
{λ(x): x ∈ X}. Points of this input point process are trans-
lated to the output spaceZ to form the output point process
{M(B): B ⊆ Z}, where each point is independently trans-
lated according to the transition densityf(z|x). Then, if
there are no insertions and deletions,{M(B): B ⊆ Z} is a
Poisson process with intensity

µ(z) =

∫

X

f(z|x)λ(x)dx.

Since the intensity of the Poisson process in our model
is parametrized by the Euclidean distances of the points
(and not by the points themselves, see previous Section), we
are going to consider a random translation in the distances.
This means that we do not observe the original distances but
noisy distances. Letf(s|r) be the transition density which
defines the random process which translates a distancer in
the input space to a distances in the observable space. If
λ(r, xt), defined in (1), is the local rate of the Poisson pro-
cess which defines the counting process in the input space,
thenµ(s), the intensity of the Poisson process in the output
space is given by

µ(s, xt) =

∫ R′

0

f(s|r)eθV (m)mrm−1dr. (4)

R′ is different from the radiusR considered in the counting
processN(R, xt). We considerR′ > R in (4) because,
points originally at distance greater thanR from xt can be
placed within a distance less thanR after the translation
process. In practice, the maximum translation is small (just
a perturbation because of the noise) and we considerR′ =
R+σ in the particular case of a Gaussian transition density
(11). The log-likelihood of the translated Poisson processis

L(m(xt), θ(xt)) =

∫ R

0

log(µ(s, xt))dN(s, xt)−
∫ R

0

λ(r, xt)dr.

The parameters of the maximum log-likelihood are ob-
tained by solving the system of equations∂L/∂m = 0 and
∂L/∂θ = 0. We then obtain the following expression form
when we use thek nearest neighbors (k-NN) instead of the
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points within distance less toR,

m(xt)=

[

1

k − 1

k−1
∑

i=1

∫ R′

0 f(Ri(xt)|r)rm−1 log Rk(xt)
r dr

∫ R′

0 f(Ri(xt)|r)rm−1dr

]−1

,

(5)
where, by an abuse of notation, we have identifiedm =
m(xt) in the right hand side. Note that this expression re-
duces to the Levina and Bickel estimator [23] in the particu-
lar case thatf(s|r) = δ(s−r), i.e., there is no translation of
the original points. This corresponds to the ideal case with
no noise.

Equation (5) is a nonlinear recursive expression inm
which is difficult to solve. Thus, we are going to approxi-
mate it by an easier to compute closed expression. Since the
translation density is modeling the effect of noise, the effec-
tive support off(s|r) is going to be concentrated arounds.
Then, we can substituterm−1 in (5) by its Taylor expansion
aroundRi. Let us write (5) in the following way

m(xt) = I−1 =

[

1

k − 1

k−1
∑

i=1

Ii

]−1

, (6)

and expandrm−1 in the integralIi via its Taylor series

Ii :=

∫ R′

0 f(Ri|r)rm−1 log Rk(xt)
r dr

∫ R′

0 f(Ri|r)rm−1dr

=

∫ R′

0 f(Ri|r) log Rk(xt)
r dr + ∆INi

+ . . .
∫ R′

0 f(Ri|r)dr + ∆IDi
+ . . .

=
INi

IDi

,

where

∆INi
:= (m− 1)R−1

i

∫ R′

0

f(Ri|r)(r −Ri) log
Rk(xt)

r
dr,

(7)
and

∆IDi
:= (m− 1)R−1

i

∫ R′

0

f(Ri|r)(r −Ri)dr. (8)

These integrals are small since the effective support of
f(Ri|r) has the same order than the level of noise (con-
sidered not very large), and the quantity(r−Ri) is small in
the vicinity ofRi. We can then approximate

Ii ≈
∫ R′

0 f(Ri|r) log Rk(xt)
r dr

∫ R′

0
f(Ri|r)dr

. (9)

Notice that with this approximation ofIi, the estimator (6)
still reduces to the noise-free Levina-Bickel estimator (2),
that isIi = log Rk

Ri
, whenf(Ri|r) = δ(Ri−r). In the more

general case, (9) is the expected value oflog Rk

r according

to the transition densityf(Ri|r) and thus reducing the effect
of noise. Using the approximation (9) in (6) we obtain

m(xt) ≈
[

1

k − 1

k−1
∑

i=1

∫ R′

0 f(Ri|r) log Rk

r dr
∫ R′

0
f(Ri|r)dr

]−1

. (10)

We explicitly estimate, in the following Section, the error
produced inm(xt) when we use the approximation (10) in-
stead of (5), for the particular important case of a Gaussian
transition density,

f(s|r) =
1√
2πσ

exp

(

− (s− r)2

2σ2

)

. (11)

In this particular case that the coordinates are perturbed by
Gaussian noise, the error in the Euclidean distance can be
approximated by a Gaussian as well (see Appendix A for
more details). Thus, the expression for the local dimension
estimator becomes

m(xt) ≈





1

k − 1

k−1
∑

i=1

∫ R′

0
exp

(

− (Ri−r)
2

2σ2

)

log Rk

r dr

∫ R′

0 exp
(

− (Ri−r)2

2σ2

)

dr





−1

.

(12)

3.1 Approximation error for a Gaussian
translation density

In order to estimate the error of approximating (5) by (10),
we compute the integrals (7) and (8), which are the largest
order error terms of the numerator and denominator, respec-
tively, in the approximation ofm(xt). For the integral (8),
notice that the Gaussian is even with respect toRi and that
(r −Ri) is odd. Then, (8) is zero if the effective support of
the Gaussian is within the interval[0, R′], that is essentially
if Ri ∈ [3σ,R′ − 3σ]. If Ri ∈ [0, 3σ] ∪ [R′ − 3σ,R′], (8)
is bounded by4.5σ2(m − 1)/Ri. We will use this bound
for ∆IDi

independently of the value ofRi. Regarding the
integral (7), we use the Taylor expansion of(r−Ri) log Rk

r
aroundRi,

(r −Ri) log
Rk
r

= (r −Ri) log
Rk
Ri

− (r −Ri)
2

Ri
+ . . . .

Again, we consider the worst case scenario,Ri ∈ [0, 3σ] ∪
[R′ − 3σ,R′], and we obtain

∆INi
≤ 4.5σ2m− 1

Ri
log

Rk
Ri
.

We use these bounds and error propagation theory to obtain
the relative error onIi,

∆Ii
Ii

=
∆INi

INi

+
∆IDi

IDi

= 4.5σ2m− 1

Ri

(

1

INi

log
Rk
Ri

+
1

IDi

)

,
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and the relative error onmk(xt),

∆m(xt)

m(xt)
=

∆I

I
=

1

I(k − 1)

∑

i

∆Ii,

which is bounded by

∆m(xt)

m(xt)
≤ 4.5σ2(m(xt) − 1)

mini

(

RiR̃i
m(xt)−1

)

(

1 +
m(xt)

m(xt, σ = 0)

)

,

(13)
wherem(xt, σ = 0) is (2), or equivalently, (5) withσ = 0,

andR̃i
m−1

= IDi
=

∫ R′

0
f(Ri|r)rm−1dr. This provides

a bound on the error of the approximation for the important
case of Gaussian noise. Similar computations can be per-
formed for other translation density (noise models). In the
case ofσ = 0 (no noise), the approximation error∆m(xt)
is zero, as expected. If we considerR̃i ≈ Ri, the bound
(13) is inversely proportional to the signal to noise ratio and
proportional to(m−1)/Rm−2

i , which is a decreasing func-
tion of the dimensionm forRi > 1. Note that the estimator
m(xt), defined in (5), is invariant to distance rescalings so
we can always ensureRi > 1.

4 Dimensionality and density estima-
tion with simultaneous soft cluster-
ing

Having introduced the critical translational Poisson model,
we are now ready to introduce the mixture of these models
to address the problem of stratification learning for noisy
point cloud data. We start with the basic model, and then
introduce a regularization term. We conclude the presenta-
tion providing asymptotic results.

4.1 Translation Poisson Mixture Model
(TPMM)

In [15], we proposed to study a stratification by extend-
ing the Levina and Bickel’s technique. Instead of model-
ing each point and its local ball of radiusR as a Poisson
process and computing the maximum likelihood (ML) for
each ball separately, all the possible balls are consideredat
the same time in the ML function. The probability density
function for the whole point cloud becomes a mixture of
Poisson distributions with different parameters (dimension
and density) in each class. This allows for the presence of
different intrinsic dimensions and densities in the dataset.
These are automatically computed while being used for soft
clustering. We extend this approach here to the more gen-
eral case when we have mixtures of translated Poisson pro-
cesses (thereby handling the noise).

Let us considerJ different translated Poisson distribu-
tions in the mixture, each one with a (possibly) different
dimensionm and density parameterθ. Let us denote byψ
the vector set of parameters,ψ = {ψj = (πj , θj ,mj); j =
1, . . . , J}, whereπj is the mixture coefficient for classj
(the proportion of distributionj in the dataset),θj is its den-
sity parameter (ρj = eθ

j

), andmj is its dimension. While
in the Levina-Bickel approach the density is assumed lo-
cally constant (inside a ball) here the density is assumed
constant inside a class (a single Poisson distribution defines
each class). However, if there is a class with different densi-
ties the algorithm will cluster also according to density (not
only dimension) and a single manifold will be represented
by clusters of the same dimension but different densities.
An example of that is shown in Figure 5. If the number of
classes is not sufficient to represent the dimension and den-
sity variability, the algorithm will give one or more classes
with a dimension and/or density which are the (weighted)
average of the actual features within the class. This is the
standard result for under-clustering. On the other hand,
we have experimentally observed that giving extra classes
is reasonable robust, since the extra classes end-up being
empty or identical to other classes.

The observable event is, as in the Levina-Bickel ap-
proach, the number of points inside the ballB(R, xt) of
radiusR centered at pointxt, denoted byyt = N(R, xt).
The total number of observations isT ′ andY = {yt; t =
1, . . . , T ′} is the observation sequence. Often,T ′ ≡ T , all
points in the dataset are considered. Let us also denote by
p(·) the probability density function and byP (·) the proba-
bility. The density function of the Poisson mixture model is
given by

p(yt|ψ) =
J

∑

j=1

πjp(yt|θj ,mj).

Since the observations follow a Poisson distribution, and we
use the translated Poisson model introduced in the previous
section, we have

p(yt|θj ,mj) = e
R

R

0
logµj(s) dN(s,xt)e−

R

R

0
λj(r)dr,

where λj(r) = eθ
j

V (mj)mjrm
j−1 and µj(s) =

∫ R′

0
f(s|r)eθj

V (mj)mjrm
j−1dr. If Y containsT sta-

tistically independent variables (a standard assumption),
then the probability density function of the observation se-
quence is the product of the individual probability densities,
p(yt|ψ), and the log-likelihood is

L(Y |ψ) = log p(Y |ψ) =

T
∑

t=1

log p(yt|ψ). (14)

Let us consider the hidden-state information, that is, which
mixture (or expert) generates each observation. We denote
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byZ = {zt ∈ C; t = 1, . . . , T} the set of hidden variables
and byC = {C1, C2, . . . CJ} the set of class labels. Then,
zt = Cj means that thej-th mixture generatesyt. UsingZ
we can write the complete data log-likelihood as

log p(Z, Y |ψ) =

T
∑

t=1

J
∑

j=1

δjt log
[

p(yt|ψj)πj
]

, (15)

where a set of indicator variablesδjt , called membership
functions, is used in order to indicate the status of the hid-
den variables:

δjt ≡ δ(zt, C
j) =

{

1 if zt = Cj ,

0 otherwise.

The unknown parameters in (15) are: The membership
function of an expert (class),δjt , the mixture probabilities,
πj , and the parameters of each expert,mj andθj . Usually,
problems involving a mixture of experts are solved by the
Expectation Maximization (EM) algorithm [10] [21, Chap.
3]. The EM is based on the following decomposition of the
log-likelihood (14):

L(Y |ψ,H) =

T
∑

t=1

J
∑

j=1

hj(yt) log
[

p(yt|ψj)πj
]

−
T

∑

t=1

J
∑

j=1

hj(yt) log
[

hj(yt)
]

,

(16)

whereH = {hj(yt) ≤ 1; t = 1, . . . , T, j = 1, . . . , J}
andhj(yt) is the probability that observationt belongs to
mixture j: hj(yt) = EZ [δjt |yt, ψ] = P (δjt = 1|yt, ψ),
whereEZ(·) is the expectation with respect toZ. Since the
membership functions are indicator variables, the first term
in (16) is the expectation of (15) with respect toZ. Also
notice that the second term is the entropy of the membership
functions.

An interesting interpretation of the EM algorithm is
introduced in [17], where the EM is seen as an alter-
nate optimization algorithm of the log-likelihood (16).
Then, the E-step is nothing else than the maximization of
L(Y |ψ,H) with respect toH with the additional constraint
that

∑J
j=1 h

j(yt) = 1 for each observationt = 1, . . . , T .
Thus, the variableshj(yt) at stepn+ 1 of the optimization
algorithm are

hjn+1(yt) =
p(yt|mj

n, θ
j
n)π

j
n

∑J
l=1 p(yt|ml

n, θ
l
n)π

l
n

. (17)

In the same way, variablesψ are obtained by maximizing
L(Y |ψ,H) with respect toψ with an additional constraint
for the mixture probabilities:

∑J
j=1 π

j=1. This gives equa-
tions (21)-(23) for the variables at stepn + 1. In order

to computemj
n+1 we have used the same approach as in

[23], by means of ak nearest neighbor graph. The TPMM
approach just described is summarized inR-TPMM Algo-
rithm below, for the particular case ofα = 0 (no regular-
ization, see below).

4.2 Regularized TPMM

The TPMM algorithm seeks a soft clustering according to
dimensionality and density, considering noise in the data,
but does not (explicitly) take into account spatial informa-
tion. Adding regularization is the goal of this section. Regu-
larization further helps to improve the classification in noisy
data and points lying close to manifold edges (see results in
figures 1 and 2). This regularization is inspired in part by
the work in [1] for the neighborhood EM (NEM), where the
authors extend the EM algorithm adding spatial constraints.
This neighborhoodspatial information is introduced as a pe-
nalization term in the log-likelihood, following Hathaway’s
EM interpretation [17]. In our context, we complete (16)
with a spatial termS(H),

F (ψ,H) = L(Y |ψ,H) + αS(H), (18)

whereα is a parameter that controls the tradeoff between
the spatial term and the likelihood. Its value is also re-
lated to the amount of noise in the data.2 Then, function
F is maximized with an alternate optimization technique.
Since the new term,S, only depends onH , the optimiza-
tion procedure results in a EM-type algorithm with a mod-
ified membership probability that not only depends on the
likelihood but also on the spatial criteria. The NEM algo-
rithm uses (note the similitude with MRFs, see below)

SNEM (H) =

T
∑

t=1

J
∑

j=1

hj(yt)
∑

l∼t

hj(yl),

wherel ∼ t indicates that there is a neighborhood relation-
ship between observationsl andt. By maximizing this term,
we want, for each observationt, as many neighbors as pos-
sible with high probability of belonging to the same class as
observationt, thus regularizing the classification. However,
we will use a more general expression forS(H) based on
a dissimilarity measure,D, between every observation and
other observations in the sequence,

S(H) = −
T

∑

t=1

J
∑

j=1

hj(yt)D(t, j,X,H). (19)

2The study of the possible connection between the regularization fac-
tor α and the level of noise and the translation density in the translation
Poisson model is an interesting subject of future research.Note that this
regularization is important beyond the noise, e.g., at manifolds edges, see
experimental results.
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The expression (19) provides a generic framework for intro-
ducing constraints in the soft classification, besides the ones
already present in the TPMM model, namely dimensional-
ity and density. One possibility, as in the NEM algorithm, is
to introduce spatial regularity. Then, as dissimilarity mea-
sure we useD = DR defined as

DR :=
∑

l∼t

(1 − hj(yl)).

Different neighborhoods definitions inDR result in differ-
ent kinds of regularization. A natural choice is the man-
ifold neighborhood, for that, we can define as neighbors
thek nearest neighbors. However, for specific applications
one might be interested in other neighborhoods, e.g., pixel
neighborhoods or contiguous frames in video applications
(see experiment in Figure 10 and Table 5).

As noted in [1], the EM algorithm with additional con-
straints can be seen as finding the Gibbs distribution with
energy−F (ψ,H). In the particular case when the ad-
ditional constraint is neighborhood dependent,SNEM (H)
andS(H) with DR, the Gibbs distribution defines a Markov
Random Field.

The maximization ofF (Equation (18)), is obtained as
in [1], with an alternate optimization technique which re-
sults in an EM-type algorithm. Maximizing (18) with re-
spect toH , withS(H) defined in (19) – with the constraints
∑J
j=1 h

j(yt) = 1 for each observationt = 1, . . . , T , by
means of Lagrange multipliers – results in the following ex-
pression for the membership probabilities:

hj(yt) =
p(yt|mj , θj)πjne

−αD′(t,j,X,H)

∑J
l=1 p(yt|ml, θl)πle−αD′(t,l,X,H)

, (20)

whereD′(t, l,X,H) =
∑

l∼t(1 − 2hj(yl)) in the par-
ticular case we are interested:D = DR, and assuming
that l ∼ t implies t ∼ l. Since the only term in (18)
which depends onψ is L(Y |ψ,H), the optimal values of
ψj = {(πj , θj ,mj) for j = {1, . . . , J}} do not change
with respect to the original TPMM algorithm. The regular-
ized version of the TPMM algorithm is summarized in the
R-TPMM Algorithm below (Regularized Translated Pois-
son Mixture Model Algorithm).

The EM suffers from local maxima, this can be allevi-
ated running the algorithm several times with different ini-
tializations. In particular, we add to the EM iterations an
extra loop where the parametersmj andθj of each class
are reinitialized every odd iteration andπj every even iter-
ation.

R-TPMM Algorithm

REQUIRE: The point cloud data,J (number of desired classes),k

(scale of observation),α (regularization parameter), andσ (noise

level or full noise/translation functionf ).
ENSURE: Regularized soft clustering according to dimensionality
and density.

1. Compute the local estimators

m(xt) =

"

1

k − 1

k−1
X

j=1

R R′

0
f(Ri(xt)|r) log Rk(xt)

r
dr

R R′

0
f(Ri(xt)|r)dr

#−1

θ(xt) = log
“

(k − 1)/
“

V (m(xt))Rk(xt)
m(xt)

””

In particular, we use the definition off given in (11).

2. Initializeψ0 = {πj
0,m

j
0, θ

j
0} andψ̄0 = {π̄j

0, m̄
j
0, θ̄

j
0} to any

set of values which ensures that
P

j π
j
0 =

P

j π̄
j
0 = 1 and

H̄0 = {h̄j
0(yt) = 1/J ; j = 1, . . . , J, t = 1, . . . , T}.

3. Iterations onl,

3A. If l is odd
Setm̄j

l = mj
0 andθ̄j

l = θj
0, for all j = 1, . . . , J .

Else
Setπ̄j

l = 1/J , for all j = 1, . . . , J .

3B. Iterations onn,

For all j = 1, . . . , J :

3B.1: Compute, for allt = 1, . . . , T ,

hj
n+1(yt) =

p(yt|m
j
n, θ

j
n)πj

ne
−αD

′(t,j,X,Hn)

PJ

l=1 p(yt|ml
n, θl

n)πl
ne−αD′(t,l,X,Hn)

,

whereHn = {hj
n(yt); j = 1, . . . , J, t = 1, . . . , T}.

3B.2: Compute

πj
n+1 =

1

T

T
X

t=1

hj
n(yt) (21)

mj
n+1=

"

T
X

t=1

hj
n(yt)m(xt)

−1/

T
X

t=1

hj
n(yt)

#−1

(22)

ρj
n+1=e

θ
j
n+1=

"

T
X

t=1

hj
n(yt)f(xt)

−1/

T
X

t=1

hj
n(yt)

#−1

(23)

whereρ(xt) = eθ(xt).

Until convergence ofψn, that is, when||ψn+1−ψn||2 <
ǫ, for a certain small valueǫ.

Setψ̄l+1 = ψn andH̄l+1 = Hn.

Until ||ψ̄l+1−ψ̄l||2 < ǫ, ||H̄l+1−H̄l||2 < ǫ or l = lmax.3

3In the experiments we uselmax = 10
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Remark 1. The PMM and R-PMM algorithms introduced
respectively in [15] and [16] are particular cases of the pa-
rametersα (regularization) andσ (noise) in the R-TPMM
algorithm . Let us introduce the following notation for the
particular cases of these parameters:

• PMM: α = 0 andσ = 0.

• R-PMM:α > 0 andσ = 0.

• TPMM:α = 0 andσ > 0.

• R-TPMM:α > 0 andσ > 0.

We will use the above notation in the experiments in Section
5.

Remark 2. Notice that the estimators(22)-(23) in the
PMM and R-PMM approaches (σ = 0) are weighted
harmonic means of the local estimators(2)-(3) of Levina-
Bickel. The weight at each point is the probability of
the membership function,h. In the particular case of
a unique class,J = 1, we obtain the global dimen-
sion estimator proposed by MacKay and Ghahramani
(http://www.inference.phy.cam.ac.uk/mackay/dimension/),
a particular case of our proposed framework.

Remark 3. We are using the same level of noiseσ for all
the clusters. A better approach might be to use aσ suitable
for each class. Although computationally speaking it will
be more demanding, since we would have to recompute the
local estimatorsm(xt) andθ(xt) at each iteration with the
σ of the assigned class. Moreover, the differentσ would
have to be estimated (this can be done for example as the
value ofσ which minimizes the estimated dimension in each
class).

As proved in [2], ifα is small enough, (18) has a guar-
anteed global maximum for a fixed value ofψ, and the
additional termS(H) does not affect the convergence of
the EM-type algorithm. It can be shown (see Appendix B)
that, for the case ofDR, the corresponding bound onα is
αR < 1/(2k).

Using the same analysis as in Section 3.1 we find that the
relative error produced in (22) by using the approximation
(10) form(xt) is

∆mj

mj
≤ 4.5σ2(mj − 1)

mini,t

(

Ri(yt)R̃i(yt)m
j−1

)

(

1 +
mj

mj(σ = 0)

)

,

wheremj(σ = 0) is (22) withσ = 0, andR̃i(yt)m
j−1 =

IDi
(yt).

4.3 Asymptotic analysis

Levina and Bickel show in [23] that under the assumptions
T → ∞, k → ∞, andk/T → 0, that is when the Poisson
approximation is correct, the mean and variance of the di-
mension estimator (2) (withk − 2 instead ofk − 1 in the
denominator) are

E[m(xt)] = mT , Var[m(xt)] =
m2
T

k − 3
,

where mT is the actual dimension. We can apply the same
type of analysis to our model in the particular case of hard
clustering, that is

hj(yt) =

{

1 if j = argmaxih
i(yt),

0 otherwise.

We assume, in addition, that all the points that belong to
classj are well classified. Then, we obtain the following
results

E[mj ] = mj
T +

mj
T

(k − 1)Nj − 1
,

Var[mj ] = (mj
T )2O

(

1

(k − 1)Nj − 4

)

,

where mjT is the correct intrinsic dimension of classj and
Nj is the amount of points classified as classj. See Ap-
pendix C for the details of the proof. This result shows
that the dimension estimator of each class is more biased
when the intrinsic dimension increases. On the other hand,
when there are more points in a class (Nj is larger), the bias
is reduced. It is reduced also by considering more near-
est neighbors, although there is a compromise for this value
since increasingk affects the underlying hypothesis of con-
stant density inside the ball. We have verified this result
experimentally and we found that the bias results in a un-
derestimation of the intrinsic dimension (this behavior was
also observed in the Levina-Bickel estimator [23]), and that
it depends on the intrinsic dimension but not on the ambi-
ent dimension. We have also experimentally observed that a
possible bias in the estimated dimension does not affect the
clustering, unless the bias makes the estimated dimension of
one class to be close to any of the other clusters estimated
dimensions.

The analysis of the density estimatorθj is the subject of
current research, as it is the study of the asymptotic behavior
for the full soft clustering model.

5 Experimental results

We now present experimental results with synthetic and real
data for the proposed R-TPMM and its variants. We also
compare some of the results with the ones obtained with
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GPCA [35] and the Souvenir and Pless [31] algorithms. We
fixed α andσ experimentally. Forα we usually use val-
ues in the interval[0, 5]. As for the case ofσ we use a
value in the order of the mean distance to the first neighbor:
σ = νR̄1, whereR̄1 = 1

N

∑

tR1(xt) and0 ≤ ν ≤ 1.
In the experiments with real data – digits, faces, video ac-
tivities, and motion – we use the following values forν:
0.4,0.4, 0.25, and 1 respectively. In the first (artificial data)
experiment, since we know the level of noise in the point
coordinates, we use the estimatedσ as computed in Ap-
pendix A. The only parameter in GPCA is the number of
clusters. In the Souvenir-Pless algorithm the input parame-
ters are the number of nearest neighbors and the dimension
of each cluster. We also fixed these parameters experimen-
tally in order to obtain the best classification results.

5.1 Synthetic data

First, we work with a point cloud formed by 300 samples of
a spiral and 800 of a plane, both in 3D embedding space. We
compare the following algorithms: PMM, R-PMM, TPMM,
R-TPMM, GPCA, and Souvenir-Pless. Figure 1 shows, for
each algorithm, the point cloud with each point colored and
marked differently according to its classification. In the dif-
ferent versions of our proposed algorithm we setk = 30,
J = 2, α = 0.75, andσ = 0.1. We test TPMM and R-
TPMM with a small value ofσ different than zero even if
there is no noise just to show that a small error in the esti-
mation ofσ does not significantly affect the result. Notice
that the regularized versions of our proposed algorithm im-
prove the classification at the edges. In the Souvenir-Pless
algorithm we usek = 10 and dimensions 2 and 2 (it gives
a better result than using the actual dimensions, 2 and 1, as
parameters). The GPCA algorithm does not give good re-
sults because it is designed for linear manifolds. Table 1
contains quantitative results of the different versions ofour
algorithm. Our approach gives some errors at the intersec-
tion of the two manifolds. This is due to the fact that a point
in the intersection has points of the other manifold as some
of its nearest neighbors. Thus, the extent of the classifica-
tion errors in the intersection depends on the amount ofk
nearest neighbors considered. Note that the GPCA handles
intersections well when working with linear manifolds [18].
Addressing this problem is part of the ongoing efforts in
the extensions of the proposed stratification learning frame-
work.

Next, we added Gaussian noise, with standard deviation
0.66, to the point coordinates. Then, if we approximate the
transition density with a Gaussian (see Appendix A), we use
the estimated standard deviationσ = 0.66

√
2 = 0.93. The

rest of the parameters we use arek = 40, J = 2, α = 1,
and for Souvenir-Pless,k = 20 and dimensions 2 and 2.
The qualitative comparison of the different algorithms can

PMM R-PMM TPMM R-TPMM
Estimated parameters for each class

C1 C2 C1 C2 C1 C2 C1 C2
m 1.90 1.02 1.90 0.99 1.87 1.03 1.87 1.00
θ 1.01 1.10 0.99 1.14 1.05 1.09 1.02 1.12

Number of points in each class
Pl. 787 13 800 0 788 12 800 0
Sp. 21 279 22 278 21 279 23 277

Table 1: Estimated parameters, dimensionm and density
ρ = eθ, in each class (C1 and C2), and clustering results of
a plane and a spiral (denoted by Pl. and Sp. respectively).
The four algorithms usek = 30 andJ = 2.

be seen in Figure 2. Again, notice how the classification
of the points at the edges is better in the regularized ver-
sions. Table 2 contains the quantitative results for the dif-
ferent variants of the proposed algorithm. In particular, it
can be seen that the translated versions give an estimation
for the dimensionm less sensible to noise.

(a) PMM (b) R-PMM (c) TPMM

(d) R-TPMM (e) GPCA (f) Souvenir-Pless

Figure 1: Clustering of a spiral and a plane. Results with
different algorithms (this is a color figure).

Due to the statistical nature of the R-TPMM approach,
it is not restricted to linear manifolds, such as GPCA [36],
nor to Euclidean manifolds, such as Isomap [33], on which
the Souvenir-Pless technique [31] is based on. This is man-
ifested in Figure 3, where we cluster a sphere and a curved
line and compare the results of the R-TPMM, GPCA and
Souvenir-Pless. The R-TPMM gives a 100% accurate clus-
tering and the estimated dimensions are 0.98 for the line and
2.05 for the sphere.

Robustness to outliers has been studied for clustering lin-
ear manifolds. In [37] a robust GPCA algorithm is pro-
posed. A segmentation of linear subspaces based on infor-
mation theory is proposed in [25], and it has been shown
to be robust to outliers. In order to see how the R-TPMM
performs in the presence of outliers, we have added outliers
to a set of points sampling a spiral and a plane. The original
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(a) PMM (b) R-PMM (c) TPMM

(d) R-TPMM (e) GPCA (f) Souvenir-Pless

Figure 2: Clustering of a spiral and a plane with noise.
Results with different algorithms (this is a color figure).

PMM R-PMM TPMM R-TPMM
Estimated parameters for each class

C1 C2 C1 C2 C1 C2 C1 C2
m 2.47 1.51 2.48 1.43 1.86 1.35 1.87 1.32
θ 0.13 0.03 0.15 0.03 0.87 0.34 0.83 0.40

Number of points in each class
Pl. 764 36 800 0 784 16 800 0
Sp. 22 278 25 275 27 273 29 271

Table 2: Estimated parameters, dimensionm and density
ρ = eθ, in each class (C1 and C2), and clustering results
of a plane and a spiral with noise (denoted by Pl. and Sp.
respectively). The four algorithms usek = 40 andJ = 2.

point coordinates are within the intervals[−11, 21], [5, 25],
and [−11, 14]. The outliers follow a uniform distribution
within the intervals[−30, 30], [−15, 35], and[−30, 30]. We
useα = 0.1 andσ = 0.1. Figure 4 shows the classifica-
tion results for different amounts of outliers and number of
classes: a)J = 2, 2.5% outliers; b)J = 3, 2.5% outliers;
c) J = 3, 50% outliers; d)J = 3, 50% outliers; e)J = 3,
75% outliers; f)J = 3, 100% outliers;. In the experiment
(a) we set two classes and we obtain a class formed by the
spiral and the outliers with an estimated dimension of 1.10,
the second class is the plane with an estimated dimension
of 1.87. Note that the estimation of the embedding dimen-
sions are not affected by the outliers when its percentage is
relatively low and we do not allow an extra class for the out-
liers. If we set three classes, experiments (b)-(f), the outliers
are clustered as a separate class, and the only errors being
at the intersections (due to points whose nearest neighbors
actually belong to different classes). The dimensions ob-
tained in each experiment are the following: (b) 1.06, 1.87,
and 10.46; (c) 1.17, 1.88, and 3.32; (d) 1.23, 1.87 and 2.92;
(e) 1.29, 1.83 and 2.97; (f) 1.28, 1.81 and 2.92. Indepen-
dently of the amount of outliers, the algorithm is able to

(a) R-TPMM (b) GPCA (c) Souvenir-Pless

Figure 3:Clustering of a sphere and a curve with R-TPMM
(k = 20, J = 2, α = 0.1 andσ = 0), GPCA and Souvenir-
Pless (k = 20, dimensions 2 and 1). R-TPMM works well
in non-Euclidean manifolds. The estimated dimensions for
each cluster in (a) are 0.98 and 2.05 for clusters in green
and red respectively (this is a color figure).

cluster apart the spiral and the plane, and the correct esti-
mation of their embedding dimensions is not affected by the
outliers. When the amount of outliers is small, 2.5% in (c),
the estimated dimension for the class ‘outliers’ is very large
due to the small amount of points belonging to this class,
and we do not have enough samples of the class ‘outlier’
in each ball (there are mixed samples from the spiral and/or
the plane). In these balls, the assumption of approximate
constant density is not satisfied either. When the amount of
outliers is larger, their estimated dimension is the same as
the ambient dimension, since there is no intrinsic structure
for these points.

(a) 2.5% outliers (b) 2.5% outliers (c) 25% outliers

(d) 50% outliers (e) 75% outliers (f) 100% outliers

Figure 4:R-TPMM clustering of a spiral and a plane with
different amount of added outliers,k = 30, α = 0.1 and
σ = 0.1. Example (a) is when considering two classes and
the rest with three classes (this is a color figure).

The experiment in Figure 5 illustrates how the soft clus-
tering is done according to both dimensionality and density.
The data consists of 2000 points on the Swiss roll, 400 on
a line with high density and 50 on another less dense line.
We have setJ = 3 and the algorithm clusters the line in
two different classes, according to the different densities.
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The estimated dimensions are: 1.98, 1.02 and 0.99. And
the estimated densities: 0.49, 0.53 and 6.89 respectively.

Figure 5: Clustering of a Swiss roll and a line with two
different densities with R-TPMM,k = 20, J = 3, α = 2
andσ = 0, no noise (this is a color figure).

Before presenting results on real data, we show how the
regularization parameterα affects the classification. Figure
6 shows the evolution, according toα, of the classification
of the spiral and the plane by the R-PMM withDR. We
have perturbed 50 randomly picked samples of the spiral
by a Gaussian noise of standard deviationσ = 0.66. It
can be observed that a small amount of regularization helps
in the classification, but whenα increases, it produces a
larger diffusion of the labelling, resulting in an inaccurate
classification. This is due to the fact that the regularization
component gains more importance than the log-likelihood
term. In the limit, whenα is quite large, the optimal so-
lution is a single class. Of course, the “optimal” value of
α, which marks these transitions, depend on each particular
experiment (this is common in MRF-type approaches, and
the study of techniques from there to automatically compute
this regularization parameter is an interesting open prob-
lem). For the experiments in this paper, we have worked
with values ofα within the interval[0, 5]. In [16] we also
tested the evolution of the classification with respect toα
with another termDC in the additional constraintS(H) so
as to impose spatial compactness within a class. Again, the
dimension/density criterion for classification was more pe-
nalized against the extra termS(H) for larger values ofα
and thus yielding rather a k-means kind of clustering (note
that within the context of GPCA, [24] also proposed a com-
bination of k-means and dimensionality clustering).

5.2 Real data

As a test of the performance with real data, we first work
with the MNIST database of handwritten digits,4 which has
a test set of 10,000 examples. Each digit is an image of
28×28 pixels and we treat the data as 784-dimensional vec-
tors. We analyze the mixture of digits one and two, some
examples of those scanned digits as well as the clustering

4http://yann.lecun.com/exdb/mnist/

(a) α = 0 (b) α = 0.25 (c) α = 1

(d) α = 8 (e) α = 20 (f) α = 25

Figure 6: Clustering of a 1D spiral and a 2D plane (R-
PMM, k = 30, J = 2). Evolution of the classification as
the regularization parameterα increases.

results are in Figure 7. Observe how the classification im-
proves adding regularization and including the noise in the
model (Translated Poisson). We have used R-PMM with
α = 4, TPMM with σ = 1.5, and R-TPMM withα = 1
andσ = 1.5. Levina-Bickel’s technique gives a dimension
value of 11.26 and Costa-Hero’s 9. These methods give a
dimension in between the two different dimensions present
in the point cloud. With the R-TPMM algorithm (and its
variants), we are able to separate the points (images) corre-
sponding to each digit and handle the noise and regulariza-
tion. Both sets of digits have different dimensionality and
density. We have observed that some other digits do have
the same dimensionality, as expected. Observe in the Table
of Fig. 7 how the dimension is reduced with the (R-)TPMM,
these values are much closer (than the ones with (R-)PMM)
to the dimension obtained with Isomap, see graph in Figure
8, applied to each one of the digits by separate. The fact that
the dimension is reduced when considering the translated
process indicates that the high dimensions were originally
due to the noise (this can be also inferred by observing the
Isomap eigenvalues in Fig.8).
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(a) Digit ’1’
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(b) Digit ’2’

Figure 8:Isomap dimensionality of Digits one and two. The
graph shows the residual variance of the first ten Isomap
embedding dimensions.
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PMM R-PMM TPMM R-TPMM
Estimated parameters for each class

C1 C2 C1 C2 C1 C2 C1 C2
m 7.33 12.79 7.36 12.95 2.86 7.14 2.88 7.24
θ -7.38 -23.99 -7.67 -23.26 -1.52 -12.70 -1.62 -12.90

Number of points in each class
‘1’ 1032 0 1032 0 1032 0 1029 3
‘2’ 70 1065 43 1092 36 1099 17 1118

Figure 7:Clustering of scanned digits ‘1’ and ‘2.’ Some examples of digits and table with estimated parameters, dimension
m and densityρ = eθ, for each class (C1 and C2), and clustering results for different variants of the R-TPMM algorithm
with J=2, k=30 (since the density isρ = eθ, ρ ≥ 0 for θ ∈ R).

We also analyze images from the Yale Face Database
B,5 which contains images of 10 subjects under 585 view-
ing conditions (9 poses and 65 illumination conditions), see
Fig. 9. Each image has a size of640×480 pixels. For com-
putational reasons we subsampled the images by a factor of
ten and use each64 × 48 image as a vector in a high di-
mensional space. We analyze the point cloud formed by the
585 images of subject 5 (varying pose and illumination) to-
gether with the 65 images of subject 6 only in the first pose
and under varying illuminations. The estimated dimensions
and confusion matrices using the PMM and R-TPMM al-
gorithm withα = 0.25 andσ = 1 are presented in Table
3. Note how both subjects are well separated, and the set of
images of subject 5 has a dimension one unity larger than
the dimension for subject 6, since we do not consider the
pose variation for this subject. The classification resultsare
improved using regularization and the translated Poisson
model. Observe also that changing the number ofk nearest
neighbors does not significantly change the results. Table 4
contains the confusion matrix obtained with the GPCA and
the Souvenir-Pless algorithms. These algorithms are com-
puted with a pre-projection of the data onto a 5-dimensional
space6. This is necessary in the GPCA because, although
not being an iterative algorithm, it consumes a lot of time in
high dimensional spaces. For the Souvenir-Pless algorithm
this point is not so critical but we obtained better classifica-
tion results in the reduced dimensionality space. However,
with the proposed R-TPMM we obtain better results in the
original space.

It must be clarified that the R-TPMM is able to sepa-
rate both subjects because their corresponding images lie in
manifolds of different dimensions. However, if we consider,
for example, a fixed pose under varying illuminations, in
both subjects, all the points are classified in the same class
since both manifolds have the same dimension (complex-
ity). In this particular case, we tested the GPCA algorithm
and it gives a 100% accurate classification.

5http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html
6We compute the SVD of the matrix dataI = UΣV T and consider

the matrix formed by the first 5 columns ofV T as the embedded data. In
GPCA we further use homogeneous coordinates [36]

PMM R-TPMM
k = 35 k = 50 k = 35 k = 50

Estimated dimension for each class
C1 C2 C1 C2 C1 C2 C1 C2

m 4.10 2.94 4.37 2.79 3.34 2.59 3.60 2.55
Number of points in each class

S. 5 569 16 575 10 584 1 584 1
S. 6 0 65 0 65 0 65 0 65

Table 3:Dimensionm for each class (C1 and C2) and clus-
tering results of the mixture of subject 5 (all poses, all il-
luminations) and subject 6 (one pose, all illuminations) in
the Yale Face Database B. PMM and R-TPMM (α = 0.25,
σ = 1) algorithms with two different values ofk. The algo-
rithms are applied in the64 × 48 dimensional space.

GPCA Souvenir-Pless
Number of points in each class
C1 C2 C1 C2

Subject 5 325 260 476 109
Subject 6 0 65 20 45

Table 4: Clustering results of the mixture of subject 5 (all
poses, all illuminations) and subject 6 (one pose, all illumi-
nations) in the Yale Face Database B. We apply GPCA and
Souvenir-Pless algorithms to the data pre-projected onto a
5 dimensional space.
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Figure 9:Examples of images of subjects 5 and 6 of the Yale
Face Database B. See results in Table 3.

The R-TPMM framework is also tested to study differ-
ent human activities in video. We created a point cloud with
the frames of a video of a person performing four different
activities: Standing, walking, jumping, and arms waving,
all performed in a static background. Each original frame is
480×640, sub-sampled to48×64 pixels, with 1673 frames
(see some frame examples in Figure 10). This is mainly to
speed up computations. In video applications, one may be
interested in temporal regularization. For that, we consider
a temporal neighborhood inDR, more concretely we take
into account the 6 previous and 6 posterior frames in the
regularization term. The confusion matrix with the classifi-
cation results using the R-TPMM algorithm (withk = 10,
α = 5 andσ = 0.25) is presented in Table 5. The error in
the classification affects only 4% of the frames.

Figure 10:Four sample frames of human activities in video.

Number of samples in each cluster
C1 C2 C3 C4

Standing 505 0 6 0
Walking 0 464 45 14
Waving 1 0 430 0
Jumping 0 0 0 207

Table 5: Classifying human activities in video with the R-
TPMM algorithm (k = 10, α = 40 andσ = 0.25). We
use the 6 previous and 6 posterior frames as neighbors in
DR, which results in a temporal regularization. The global
classification is 96% accurate.

Finally, we tested the R-TPMM algorithm in a mo-
tion segmentation application. We use a sequence of the
Kanatani Lab7, see some examples of frames in Figure 11.
This sequence was originally used in [19] and then in [36].
The data consists of the 2D projection coordinates of the
trajectories along the sequence of some interest points. The
sequence that we analyze corresponds to a car moving in
a parking lot and there are two different motions in the se-
quence. As in [36] we pre-project the data, originally in
a 60-dimensional space (2 coordinates× 30 frames), onto
a 5-dimensional space. In Table 6 we show the classifica-
tion effectiveness for different methods: Costeira-Kanade,
Ichimura, Kanatani-Sugaya (the three of them reported in
[19]), Souvenir-Pless, GPCA and R-TPMM. For the R-
TPMM we usek = 10, α = 2 andσ = 0.05. We also
tested our algorithm with the other two sequences used in
[19, 36] and obtained a single class since the two differ-
ent motions have the same dimension (complexity). Thus,
it is necessary to introduce an additional constraint in the
R-TPMM approach in order to deal with these cases.

Figure 11:Two frames of a sequence of the motion segmen-
tation database of the Kanatani Laboratory.

Method Effectiveness

Costeira-Kanade 60.3%
Ichimura 92.6%

Kanatani-Sugaya 100%
Souvenir-Pless 93.38%

GPCA 100%
RTPMM 100%

Table 6: Classification rates, using different methods, for
the motion segmentation in the Kanatani Laboratory se-
quence (see example frames in Fig. 11).

Regarding the computational time, the most expensive
part is the kNN-graph. In the digits experiment (Fig. 7),
2167 points of dimension 784, the execution takes 18.37s
while 10.29s of the total time is spent in the computation
of the kNN-graph. For the experiment with the Yale faces
(Fig. 9, 650 points of dimension 3072) the execution time
is 7.64s (3.70s for the kNN-graph). In the video experiment

7http://www.suri.it.okayama-u.ac.jp/data.html
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(Fig. 10, 1673 points of dimension 3072) the total time
and the kNN-graph time are, respectively, 29.78s and 24.87
(CPU: Pentium Core 2 Duo, 2.0 GHz, 2.0 GB memory).

6 Conclusions

In this paper we developed a framework for the simulta-
neous and regularized/constrained estimation of the intrin-
sic dimensionality and density of high dimensional noisy
point cloud data sampled from a stratification, as the basis
for complexity/density based soft-clustering. The algorithm
is based on a statistical model which addresses the pres-
ence of noise in the measurements. Our previous related
works [15, 16] are particular cases of the R-TPMM algo-
rithm introduced in this paper. We showed that regulariza-
tion constraints can be naturally introduced in this approach.
The experiments showed the importance of incorporating
the noise in the model and also of adding regularization in
the classification. We also showed that the algorithm is ro-
bust to outliers. With the proper dissimilarity function and
neighborhood type, we are able to add spatial or temporal
regularity in the classification or intra-class spatial compact-
ness. Other type of constraints are possible under the same
proposed framework. Asymptotic theoretical results were
also presented.

We would like to follow this direction of work and study
other constraints which can be useful for stratification learn-
ing. One possibility is to define a dissimilarity function
which leads to separate different manifolds that share the
same dimensionality and density. This will define a new
constraint that will also help in the classification process
when there is an intersection of two manifolds (and where
the algorithm fails at the present stage). Since the den-
sity depends on the dimension, we are intrinsically giving
more importance to the dimension criterion in our frame-
work. The control of the relative importance of these two
criteria needs also to be addressed.

Appendix A: Estimation of the distri-
bution of distance errors

In this section we derive the distribution of the error in the
distance between a pair of points when this distance is com-
puted from noisy points. We are interested in the particular
case when the noise follows an i.i.d. Gaussian distribution
in each of the point coordinates.

Let X = {xt ∈ R
p; t = 1, . . . , T} and X̂ = {x̂t ∈

R
p; t = 1, . . . , T} be two point clouds which are related in

the following way: x̂t = xt + nt, for each indext, where
nt ∼ N(0, σ2), i.e., X̂ is a noisy version ofX . Let Dij

(resp. D̂ij ) be the Euclidean distance between pointsxi

andxj (resp.x̂i andx̂j). We can writeD̂ij as a function of
the original pointsxi andxj :

D̂ij =||x̂i − x̂j ||2
=

(

D2
ij + ||ni − nj ||22 + 2 <(xi − xj), (ni − nj)>

)1/2
.

Expanding the previous expression in a Taylor series around
Dij (considering the rest of the terms sufficiently small), we
obtain,

D̂ij ≈Dij +
<(xi − xj), (ni − nj)>

Dij
+

||ni − nj||22
2Dij

− 1

8

(<(xi − xj), (ni − nj)>)
2

D3
ij

+O(σ3)

=Dij +Dn1
+Dn2

+Dn3
+O(σ3).

In order to estimate the probability density function of the
three error termsDni

, i = 1 . . . 3, in D̂ij we make use of
the following properties:

1. IfX ∼ N(µ, σ2) anda, b ∈ R, thenaX+b ∼ N(aµ+
b, (aσ)2).

2. If X ∼ N(µX , σ
2
X) andY ∼ N(µY , σ

2
Y ) are inde-

pendent variables, then:

(a) X + Y ∼ N(µX + µY , σ
2
X + σ2

Y ),

(b) X − Y ∼ N(µX − µY , σ
2
X + σ2

Y ).

3. If X1, . . . , Xp are iid variables s.t.Xi ∼ N(µi, σ
2
i ),

thenU =
∑p
i=1

(

Xi−µi

σi

)2

follows a Chi-square dis-

tribution withp degrees of freedom,U ∼ χ2
p.

4. If X is a random variable with probability density
functionf(x) andY = aX , wherea ∈ R, then, the
probability density function ofY is 1

|a|f(xa ).

5. The probability density function of the sum of two in-
dependent random variablesX andY with probability
density functionsf andg is the convolution

(f ∗ g)(x) =

∫ ∞

−∞

f(y)g(x− y) dy.

The error termDn1
∼ N(0, 2σ2), by using proper-

ties 1, 2(a) and2(b) (notice that the denominator cancels
out the weights in the numerator when adding the indi-
vidual (constant) variances in each coordinate). The sec-

ond term,Dn2
∼ χ̂2

p =
Dij

σ2 χ
2
p

(

Dij

σ2 x
)

(properties 2(b)

and 3). And for the last term, using properties 1 - 4,

Dn3
∼ χ̆2

1 =
32D2

ij

σ2 χ2
1

(

− 32D2
ij

σ2 x
)

.
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Finally, using the previous results and Property 5, we can
write

D̂ij ≈ Dij +W ; where W ∼ N(0, 2σ2) ∗ χ̂2
p ∗ χ̆2

1.

In Figure 12 we show the distributionN(0, 2σ2) com-
pared with the estimated distributionW for σ = 0.5, p = 3
and two different values forDij : 1.0 and 3.0. As we can
see in this Figure, for a fixedσ, asDij gets larger, the dis-
tributionW is closer to aN(0, 2σ2) distribution. Then, for
valuesDij

σ not very small, that is, for sufficient SNR, we can
approximate the probability density function of the error in
the distance as a Gaussian.
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Estimated D=1

Estimated D=3

Figure 12: Gaussian distribution,N(0, 2σ2) with σ = 0.5,
compared to the estimated distributionW for two different
values ofDij : 1.0 and 3.0.

Appendix B: Bound on α for conver-
gence

We now show that, for a fixedψ, F (ψ,H) defined in (18)
has a global maximum. For that, we follow the same lines
as in [2]. Let us callFψ(H) the functional (18) whenψ is
fixed.Fψ(H) has a global maximum if it is strictly concave,
i.e. if its Hessian matrixH, with components

Hil,jt =
δ2F

δhilδh
j
t

=











−1/hjt if i = j andl = t

2α if i = j andl ∼ t

0 otherwise,

,

(24)
is strictly negative. The Gerschgorin-Hadamard Theorem
tell us that the eigenvaluesλ of this Hessian matrix belong
to the union of discs indexed by(j, t) and defined by

|λ−Hjt,jt| ≤
∑

(i,l) 6=(j,t)

|Hjt,il|.

Substituting the last expression with values in (24) gives
∣

∣

∣

∣

λ− 1

hjt

∣

∣

∣

∣

≤
∑

l∼t

2α = 2αk,

wherek is the number of neighbors in the regularization
term. Sincehjt ∈ [0, 1], H is strictly negative, i.e., every

eigenvalueλ < 0, if
∣

∣

∣
λ− 1

hj
t

∣

∣

∣
< 1, and this is true for

α < 1/(2k).

Appendix C: Proof of the asymptotic
analysis

When we consider the particular case of hard clustering we
have

hj(yt) = δjt =

{

1 if j = argmaxih
i(yt),

0 otherwise.

The estimator of the dimension in classj can be expressed
as

mj =

[

1

Nj

T
∑

t=1

δjt
1

k − 1

k−1
∑

i=1

log
Rk(yt)

R̄i(yt)

]−1

, (25)

whereNj is the number of points clustered in classj and

log R̄i(yt) =

∫ R′

0
f(Ri(yt)|r) log rdr

∫ R′

0
f(Ri(yt)|r)dr

. (26)

In the (R-)PMM approach we havēRi = Ri. We can
rewrite (25) as

mj = Nj(k − 1)mj
TZ

−1, (27)

where mjT is the actual dimension of classj andZ is

Z =

T
∑

t=1

δjtYt ; Yt = mj
T

k−1
∑

i=1

log
Rk(yt)

R̄i(yt)
.

With the proper definition of the upper limitR′ in the inte-
gral in (26) and the transition densityf(Ri|r) whenRi is
close toR′, we can guarantee that̄Ri ≤ Rk (always true in
(R-)PMM). In this case, we use the fact that(R̄i/Rk)

mj

T

is distributed, under the Poisson assumption, as a Uni-
form(0,1) distribution, the− log of such a distribution is
an Exponential(1), and then, the sum of(k − 1) Exponen-
tial(1) distributed variables is a Gamma(k − 1,1). Then,
Yt ∼ Gamma(k− 1,1) and the sum ofNj Gamma(k− 1,1)
distributions givesZ ∼ Gamma(Nj(k − 1),1) andZ−1 ∼
Inverse-Gamma((k − 1)Nj,1). The expectation ofZ−1 is
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1/(Nj(k−1)−1), and substituting in (27), considering that
1 < Nj(k − 1), yields

E[mj ] = mj
T +

mj
T

(k − 1)Nj − 1
.

Regarding the variance,

Var[mj ] = N2
j (k − 1)2Var[Z−1],

where

Var[Z−1] =
1

(Nj(k − 1) − 1)2(Nj(k − 1) − 2)
.

We now define

a :=
2 − 5Nj(k − 1)

N2
j (k − 1)2(Nj(k − 1) − 2)

.

After simple computations and under the hypothesis that
|a| < 1, we obtain

Var[mj ] =
(mj

T )2

Nj(k − 1) − 2

[

1 +

∞
∑

n=1

an

]

,

and since the second term is smaller than the first one, we
can write

Var[mj ] = (mj
T )2O

(

1

Nj(k − 1) − 2

)

.
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